Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
2.
Environ Int ; 166: 107369, 2022 Jun 22.
Article in English | MEDLINE | ID: covidwho-2305916

ABSTRACT

Particulate nitrate (pNO3) is now becoming the principal component of PM2.5 during severe winter haze episodes in many cities of China. To gain a comprehensive understanding of the key factors controlling pNO3 formation and driving its trends, we reviewed the recent pNO3 modeling studies which mainly focused on the formation mechanism and recent trends of pNO3 as well as its responses to emission controls in China. The results indicate that although recent chemical transport models (CTMs) can reasonably capture the spatial-temporal variations of pNO3, model-observation biases still exist due to large uncertainties in the parameterization of dinitrogen pentoxide (N2O5) uptake and ammonia (NH3) emissions, insufficient heterogeneous reaction mechanism, and the predicted low sulfate concentrations in current CTMs. The heterogeneous hydrolysis of N2O5 dominates nocturnal pNO3 formation, however, the contribution to total pNO3 varies among studies, ranging from 21.0% to 51.6%. Moreover, the continuously increasing PM2.5 pNO3 fraction in recent years is mainly due to the decreased sulfur dioxide emissions, the enhanced atmospheric oxidation capacity (AOC), and the weakened nitrate deposition. Reducing NH3 emissions is found to be the most effective control strategy for mitigating pNO3 pollution in China. This review suggests that more field measurements are needed to constrain the parameterization of heterogeneous N2O5 and nitrogen dioxide (NO2) uptake. Future studies are also needed to quantify the relationships of pNO3 to AOC, O3, NOx, and volatile organic compounds (VOCs) in different regions of China under different meteorological conditions. Research on multiple-pollutant control strategies involving NH3, NOX, and VOCs is required to mitigate pNO3 pollution, especially during severe winter haze events.

3.
Atmospheric Environment ; : 119666.0, 2023.
Article in English | ScienceDirect | ID: covidwho-2245650

ABSTRACT

In March 2022, the resurgence of COVID-19 cases in Shenzhen, a megacity in the Pearl River Delta (PRD) region of China, led to unusual restrictions on anthropogenic activities within a single city, in contrast to the restrictions COVID-19 caused on a national scale at the beginning of 2020. In this unique event, we found that only under unfavorable meteorological conditions did substantial urban local emission reductions have an impact on air pollutant changes (−42.4%–6.6%), whereas the deweathered changes were very small (−8.3%–3.4%) under favorable meteorological conditions. Primary anthropogenic pollutants, such as NO2, toluene, BC, and primary organic aerosol (POA), responded most considerably to emission reductions from early morning to noon during unfavorable meteorological days;for secondary organic aerosol (SOA), regulating the daytime total oxidant (Ox = O3 + NO2) was found to be more effective than controlling its precursors within the city scale, whereas secondary nitrate displayed the opposite trend. Since Ox changed little during the urban lockdown despite the remarkable decrease in precursors, it is emphasized that regionally coordinated control of VOCs and NOx is necessary to effectively reduce Ox levels. In addition, Shenzhen's NOx emission reduction efforts should be sustained in order to control PM2.5 and O3 pollution synergistically for long-term attainment.

4.
Atmospheric Chemistry and Physics ; 22(8):5495-5514, 2022.
Article in English | ProQuest Central | ID: covidwho-1811067

ABSTRACT

PM2.5, generated via both direct emission and secondary formation, can have varying environmental impacts due to different physical and chemical properties of its components. However, traditional methods to quantify different PM2.5 components are often based on online or offline observations and numerical models, which are generally high economic cost- or labor-intensive. In this study, we develop a new method, named Multi-Tracer Estimation Algorithm (MTEA), to identify the primary and secondary components from routine observation of PM2.5. By comparing with long-term and short-term measurements of aerosol chemical components in China and the United States, it is proven that MTEA can successfully capture the magnitude and variation of the primary PM2.5 (PPM) and secondary PM2.5 (SPM). Applying MTEA to the China National Air Quality Network, we find that (1) SPM accounted for 63.5 % of the PM2.5 in cities in southern China on average during 2014–2018, while the proportion dropped to 57.1 % in the north of China, and at the same time the secondary proportion in regional background regions was ∼ 19 % higher than that in populous regions;(2) the summertime secondary PM2.5 proportion presented a slight but consistent increasing trend (from 58.5 % to 59.2 %) in most populous cities, mainly because of the recent increase in O3 pollution in China;(3) the secondary PM2.5 proportion in Beijing significantly increased by 34 % during the COVID-19 lockdown, which might be the main reason for the observed unexpected PM pollution in this special period;and finally, (4) SPM and O3 showed similar positive correlations in the Beijing-Tianjin-Hebei (BTH) and Yangtze River Delta (YRD) regions, but the correlations between total PM2.5 and O3 in these two regions, as determined from PPM levels, were quite different. In general, MTEA is a promising tool for efficiently estimating PPM and SPM, and has huge potential for future PM mitigation.

5.
Front Public Health ; 9: 689575, 2021.
Article in English | MEDLINE | ID: covidwho-1775810

ABSTRACT

Background: Human immunodeficiency virus (HIV) is a single-stranded RNA virus that can weaken the body's cellular and humoral immunity and is a serious disease without specific drug management and vaccine. This study aimed to evaluate the epidemiologic characteristics and transmissibility of HIV. Methods: Data on HIV follow-up were collected in Nanning City, Guangxi Zhuang Autonomous, China. An HIV transmission dynamics model was built to simulate the transmission of HIV and estimate its transmissibility by comparing the effective reproduction number (Reff ) at different stages: the rapid growth period from January 2001 to March 2005, slow growth period from April 2005 to April 2011, and the plateau from May 2011 to December 2019 of HIV in Nanning City. Results: High-risk areas of HIV prevalence in Nanning City were mainly concentrated in suburbs. Furthermore, high-risk groups were those of older age, with lower income, and lower education levels. The Reff in each stage (rapid growth, slow growth, and plateau) were 2.74, 1.62, and 1.15, respectively, which suggests the transmissibility of HIV in Nanning City has declined and prevention and control measures have achieved significant results. Conclusion: Over the past 20 years, the HIV incidence in Nanning has remained at a relatively high level, but its development trend has been curbed. Transmissibility was reduced from 2.74 to 1.15. Therefore, the prevention and treatment measures in Nanning City have achieved significant improvement.


Subject(s)
HIV Infections , Basic Reproduction Number , China/epidemiology , HIV , HIV Infections/epidemiology , Humans
6.
Geophysical Research Letters ; n/a(n/a):e2021GL095339, 2022.
Article in English | Wiley | ID: covidwho-1648365

ABSTRACT

Large emission reductions of anthropogenic nitrogen oxides (NOx) due to the coronavirus disease 2019 (COVID-19) lockdown policies in China have been extensively reported since the outbreak, while assessments of sectoral emission changes during that period are still limited. In this study, a source-oriented community multiscale air quality (CMAQ) model was applied to quantify NO2 concentrations from major emission sectors. A new optimization approach was employed to obtain the sectorial emission reductions using satellite and ground-level observations as constraints. The optimized emissions significantly improved the model performance of NO2 during the lockdown period. February NOx emission changes varied with regions and sectors, with relatively larger reductions in transportation (286.6 kt) and industrial sources (260.1 kt). The maximum amount of NOx emission reduction occurred in the North China Plain (230.6 kt). Our work presents a quick and reliable technique for assessing sector-specific emission changes due to short-term emission control policies.

7.
Int J Environ Res Public Health ; 18(14)2021 07 14.
Article in English | MEDLINE | ID: covidwho-1314641

ABSTRACT

With the COVID-19 vaccination widely implemented in most countries, propelled by the need to revive the tourism economy, there is a growing prospect for relieving the social distancing regulation and reopening borders in tourism-oriented countries and regions. This need incentivizes stakeholders to develop border control strategies that fully evaluate health risks if mandatory quarantines are lifted. In this study, we have employed a computational approach to investigate the contact tracing integrated policy in different border-reopening scenarios in Hong Kong, China. Explicitly, by reconstructing the COVID-19 transmission from historical data, specific scenarios with joint effects of digital contact tracing and other concurrent measures (i.e., controlling arrival population and community nonpharmacological interventions) are applied to forecast the future development of the pandemic. Built on a modified SEIR epidemic model with a 30% vaccination coverage, the results suggest that scenarios with digital contact tracing and quick isolation intervention can reduce the infectious population by 92.11% compared to those without contact tracing. By further restricting the inbound population with a 10,000 daily quota and applying moderate-to-strong community nonpharmacological interventions (NPIs), the average daily confirmed cases in the forecast period of 60 days can be well controlled at around 9 per day (95% CI: 7-12). Two main policy recommendations are drawn from the study. First, digital contact tracing would be an effective countermeasure for reducing local virus spread, especially when it is applied along with a moderate level of vaccination coverage. Second, implementing a daily quota on inbound travelers and restrictive community NPIs would further keep the local infection under control. This study offers scientific evidence and prospective guidance for developing and instituting plans to lift mandatory border control policies in preparing for the global economic recovery.


Subject(s)
COVID-19 , Quarantine , COVID-19 Vaccines , China , Contact Tracing , Hong Kong , Humans , Models, Theoretical , Policy , Prospective Studies , SARS-CoV-2
8.
European Journal of Soil Biology ; 105:N.PAG-N.PAG, 2021.
Article in English | Academic Search Complete | ID: covidwho-1300754

ABSTRACT

The combined application of organic materials and chemical fertilizers is an effective approach for improving crop productivity and soil quality. Purple soil is characterized by low N, P, and organic C contents that influence crop productivity. However, the optimal organic materials that can be used to improve purple soil quality and crop yields remain to be clarified. Here, we conducted a 13-year field experiment (from 2007 to 2019) in Sichuan Province, China, intending to assess the long-term influence of various combinations of organic materials and chemical fertilizers on soil enzymatic activities, microbial communities, and crop yields. Treatments included chemical fertilizer alone (NPK), NPK plus returned straw (NPKS), NPK plus pig manure (NPKM), NPK plus fungal residue (NPKF), and NPK plus green manure (Vicia villosa Rothvar.) (NPKG). Results showed that NPKM and NPKF treatments significantly increased the average yields of maize (7.9 and 6.4%, respectively) and wheat (15.7 and 12.9%, respectively) relative to NPK treatment. The highest sustainable yield index value of maize and wheat was observed in NPKF treatment. The long-term application of fungal residue (NPKF) significantly increased soil organic C and available P contents, relative to NPK、NPKS and NPKG treatments, and soil organic C content increased from 6.95 to 9.12 ± 1.06 g kg−1 and available P content from 6.87 to 12.26 ± 2.23 mg kg−1. Relative to NPK treatment, NPKF treatment significantly enhanced soil microbial biomasses (C, N, and P) and soil C-, N- and P-cycling enzyme activities but significantly decreased soil pH. The soil enzyme index following NPKF treatment was significantly higher relative to other treatments and was 208.6% higher than NPK treatment. Additionally, relative to NPK treatment, NPKF treatment altered soil microbial community structure, and significantly increased the rate of G+/G− and cy19/18:1ω7c. Soil microbial biomasses N, Nitrate N, and available P were the main factors regulating the change of microbial community in purple soil. We, therefore, conclude that NPKF treatment is an effective fertilization strategy for improving purple soil quality and crop yields. • NPKM and NPKF treatments significantly increased average yields of wheat and maize. • NPKF treatment significantly increased soil organic C and available P contents. • NPKF treatment significantly enhanced soil C-, N- and P-cycling enzyme activities and microbial biomasses. • NPKF treatment altered soil microbial community, and significantly increased the rate of G+/G− and cy19/18:1ω7c. [ABSTRACT FROM AUTHOR] Copyright of European Journal of Soil Biology is the property of Elsevier B.V. and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)

9.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.05.16.444324

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the virus that causes coronavirus disease 2019 (COVID-19), the respiratory illness responsible for the COVID-19 pandemic. SARS-CoV-2 is a positive-stranded RNA virus belongs to Coronaviridae family. The viral genome of SARS-CoV-2 contains around 29.8 kilobase with a 5'-cap structure and 3'-poly-A tail, and shows 79.2% nucleotide identity with human SARS-CoV-1, which caused the 2002-2004 SARS outbreak. As the successor to SARS-CoV-1, SARS-CoV-2 now has circulated across the globe. There is a growing understanding of SARS-CoV-2 in virology, epidemiology, and clinical management strategies. In this study, we verified the existence of two 18-22 nt small viral RNAs (svRNAs) derived from the same precursor in human specimens infected with SARS-CoV-2, including nasopharyngeal swabs and formalin-fixed paraffin-embedded (FFPE) explanted lungs from lung transplantation of COVID-19 patients. We then simulated and confirmed the formation of these two SARS-CoV-2-Encoded small RNAs in human lung epithelial cells. And the potential pro-inflammatory effects of the splicing and maturation process of these two svRNAs in human lung epithelial cells were also explored. By screening cytokine storm genes and the characteristic expression profiling of COVID-19 in the explanted lung tissues and the svRNAs precursor transfected human lung epithelial cells, we found that the maturation of these two small viral RNAs contributed significantly to the infection associated lung inflammation, mainly via the activation of the CXCL8, CXCL11 and type I interferon signaling pathway. Taken together, we discovered two SARS-CoV-2-Encoded small RNAs and investigated the pro-inflammatory effects during their maturation in human lung epithelial cells, which might provide new insight into the pathogenesis and possible treatment options for COVID-19.


Subject(s)
Pneumonia , Severe Acute Respiratory Syndrome , COVID-19
10.
Geophys Res Lett ; 48(8): e2020GL091591, 2021 Apr 28.
Article in English | MEDLINE | ID: covidwho-1124648

ABSTRACT

During the COVID-19 lockdown in 2020, large-scale industrial and transportation emissions were reduced, but high PM2.5 concentration still occurred. This study investigated the variation of particle number size distribution during the lockdown, and analyzed the characteristics of new particle formation (NPF) events and its potential impact on haze formation. Through measurement conducted in urban Beijing during the first 3 months of 2020, and comparison with year-over-year data, the decrease of primary Aitken-mode particles was observed. However, frequencies, formation rates and growth rates of NPF events remained stable between 2020 and 2019 in the same period. As a result, >25 nm particles produced by NPF events, would play a more important role in serving as the haze formation "seeds" compared to those produced by primary emissions. This finding emphasizes the significance on the understanding of NPF mechanisms when making pollution mitigation policy in the future.

11.
Travel Med Infect Dis ; 36: 101816, 2020.
Article in English | MEDLINE | ID: covidwho-796347

ABSTRACT

BACKGROUND: Between January 24, 2020 and February 15, 2020, an outbreak of COVID-19 occurred among 335 passengers on a flight from Singapore to Hangzhou in China. This study aimed to investigate the source of the outbreak and assess the risk of transmission of COVID-19 during the flight. METHOD: Using a standardized questionnaire, we collected information on the travelers' demographic characteristics and illness before, during, and after the flight. We also collected data on factors potentially associated with COVID-19 transmission during the flight. RESULTS: A total of 16 COVID-19 patients were diagnosed among all passengers; the overall attack rate was 4.8%. The attack rate among passengers who had departed from Wuhan was significantly higher than that among those who had departed from other places. One passenger without an epidemiological history of exposure before boarding developed COVID-19. During the flight, he was seated near four infected passengers from Wuhan for approximately an hour and did not wear his facemask correctly during the flight. CONCLUSIONS: COVID-19 transmission may have occurred during the flight. However, the majority of the cases in the flight-associated outbreak could not be attributed to transmission on the flight but were associated with exposure to the virus in Wuhan or to infected members in a single tour group.


Subject(s)
Air Travel , Asymptomatic Infections/epidemiology , Coronavirus Infections/epidemiology , Coronavirus Infections/transmission , Pneumonia, Viral/epidemiology , Pneumonia, Viral/transmission , Adult , Betacoronavirus , COVID-19 , China/epidemiology , Disease Outbreaks , Female , Humans , Male , Masks , Middle Aged , Pandemics , SARS-CoV-2 , Singapore/epidemiology , Travel-Related Illness
12.
Eur Urol ; 77(6): 742-747, 2020 06.
Article in English | MEDLINE | ID: covidwho-27850

ABSTRACT

Coronavirus disease 2019 (COVID-19) is a novel and lethal infectious disease, posing a threat to global health security. The number of cases has increased rapidly, but no data concerning kidney transplant (KTx) recipients infected with COVID-19 are available. To present the epidemiological, clinical, and therapeutic characteristics of KTx recipients infected with COVID-19, we report on a case series of five patients who were confirmed as having COVID-19 through nucleic acid testing (NAT) from January 1, 2020 to February 28, 2020. The most common symptoms on admission to hospital were fever (five patients, 100%), cough (five patients, 100%), myalgia or fatigue (three patients, 60%), and sputum production (three patients, 60%); serum creatinine or urea nitrogen levels were slightly higher than those before symptom onset. Four patients received a reduced dose of maintenance immunosuppressive therapy during hospitalization. As of March 4, 2020 NAT was negative for COVID-19 in three patients twice in succession, and their computed tomography scans showed improved images. Although greater patient numbers and long-term follow-up data are needed, our series demonstrates that mild COVID-19 infection in KTx recipients can be managed using symptomatic support therapy combined with adjusted maintenance immunosuppressive therapy.


Subject(s)
Betacoronavirus/isolation & purification , Clinical Laboratory Techniques , Coronavirus Infections/diagnosis , Immunosuppressive Agents/adverse effects , Kidney Transplantation/adverse effects , Opportunistic Infections/diagnosis , Pneumonia, Viral/diagnosis , Transplant Recipients , Adult , Betacoronavirus/genetics , Betacoronavirus/immunology , COVID-19 , COVID-19 Testing , China , Coronavirus Infections/therapy , Coronavirus Infections/virology , Female , Humans , Immunocompromised Host , Immunosuppressive Agents/administration & dosage , Male , Middle Aged , Opportunistic Infections/therapy , Opportunistic Infections/virology , Pandemics , Pneumonia, Viral/therapy , Pneumonia, Viral/virology , Predictive Value of Tests , SARS-CoV-2 , Severity of Illness Index , Time Factors , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL